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Thermodynamic criteria governing the stability of fluctuating 
paths in the limit of small thermal fluctuations: 
Critical paths and temporal bifurcations? 

B H Lavenda 
Universita di Camerino, Dipartimento di Scienze Chimiche, via Sant’Agostino 1 ,  Camerino 
62032, MC Italy and TEMA SPA, viale Aldo Mor0 38, Bologna 40127, Italy 

Received 2 April 1984, in final form 20 June 1984 

Abstract. Thermodynamic criteria for the stability of the most probable path for a fluctuation 
are derived in the limit of small thermal fluctuations. The positive definiteness of the 
second Frechet aiff erential of the Onsager-Machlup functional insures that the asymptotic 
probability distribution will be Gaussian about that extrema1 path at which the Onsager- 
Machlup functional is a proper minimum. The vanishing of one of the eigenvalues of the 
second Frechet differential of the Onsager-Machlup functional indicates the presence of 
a critical path. The lowest-order term in the extended form of the Taylor series expansion 
of the Onsager-Machlup functional determines the stability characteristics of the critical 
path. The cubic case is examined in detail. 

1. Introduction and summary 

There appears to be a rather profound analogy between equilibrium and non-equili- 
brium thermodynamic critical phenomena. Equilibrium thermodynamic stability 
criteria are couched in the convexity of thermodynamic potentials. These potentials 
govern the stability of the ‘most probable’ or equilibrium state. In the case of second- 
order phase transitions (see, for example, Landau and Lifshitz 1969), the critical point 
is determined by the vanishing of the second variation of the thermodynamic potential. 
The question of stability in the critical region rests with the higher-order terms in the 
Taylor series expansion of the thermodynamic potential about the equilibrium state. 
In order to insure stability in the critical region, the third-order terms vanish and the 
fourth-order terms must be positive definite. The vanishing of the third-order terms 
attests to the fact that the thermodynamic potential cannot be a function of the sign 
of the fluctuation. Beyond the critical point, the initial state becomes unstable and 
two new states appear which are symmetrically arranged about the unstable state. 
These states are determined from the stationary condition of a potential which is a 
fourth-order polynomial in the ‘order’ parameter. 

Non-equilibrium phase transitions can manifest themselves as bifurcations in the 
branch solution of the kinetic equations that would reduce to thermodynamic equili- 
brium in the absence of the non-equilibrium constraint (Lavenda 1970). The unstable 
transition is determined by a competition between the opposing effects of random 
thermal fluctuations and collective, deterministic motion. Once beyond the transition 
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point, we shall see that the two opposing factors swap roles. In the limit of small 
thermal fluctuations, we would expect the asymptotics to reflect the statistical indepen- 
dence of the process, analogous to a central limit theorem and the law of large numbers 
(cf expression (21) and following discussion), were it not for the predominance of 
the collective motion. The breakdown in the central limit theorem would be significant 
of large correlations in a certain mode. The amplitude of this mode grows to a finite 
value, which is the order parameter of the phase transition. This mode has a zero 
frequency and at zero frequency, random thermal fluctuations are a dominant noise 
source. Such forms of non-equilibrium bifurcation phenomena are well known; for 
example, they occur in the laser start-up (Scully and DiGiorgio 1970) where the unstable 
transition leads to a state in which there is an emission of nearly monochromatic, 
intense radiation, in the DC Josephson junction (Ambegaokar and Halpern 1969), 
where at temperatures sufficiently close to the transition temperature, thermal fluctu- 
ations can disrupt the coupling of phases of the order parameters of two superconduc- 
tors separated by a thin insulating barrier, and in the transition from a laminar to a 
turbulent state in hydrodynamics (Landau 1937, Ruelle and Takens 1971). 

Thermodynamic criteria governing non-equilibrium statistical processes in the limit 
of small thermal fluctuations have been derived in Lavenda and Santamato (1982). 
The asymptotic results were obtained from estimates involving probabilities and their 
densities. Other types of asymptotic results pertain to averages with respect to the 
Wiener integral. Rigorous results on the asymptotic expansion of the Wiener integral 
have been obtained by Schilder (1966) by involving Laplace’s method. What Schilder 
showed was that a parallel translation of the probability measure associated with a 
diffusion process with a finite drift transforms it into a new probability measure such 
that the most probable trajectory of the diffusion process with respect to the new 
measure turns out to be the extremal of a certain functional in the case of a small 
characteristic parameter. The new probability measure is asymptotically Gaussian 
about the extremal. The application of Laplace’s method for Gaussian integrals has 
further been developed by Ellis and Rosen (1982a). Ellis and Rosen (1980, 1982b) 
generalised the Laplace method to simple degenerate and coalescing minima. The 
stationary phase analogue of Laplace’s method for the quantum mechanical propagator 
has been developed by Schulman (1975, 1981). 

In this paper, we show that the Onsager-Machlup (OM)  functional (Lavenda and 
Santamato 1982) governs the stability non-equilibrium thermodynamic statistical pro- 
cesses in the limit of small thermal fluctuations. This functional determines the stability 
of the most probable path of a fluctuation in an analogous manner that an equilibrium 
thermodynamic function determines the stability of the equilibrium or most probable 
state. On the basis of the validity of the Laplace method for Wiener integrals (Schilder 
1966, Ellis arid Rosen 1982a), we show that the stability of the most probable path of 
a non-equilibrium fluctuation is governed by the sign of the second Frechet differential 
of the OM functional. The most probable path is stable when the second Frechet 
differential is positive definite. ‘Critical’ paths occur when the second Frechet differen- 
tial vanishes. This corresponds to a coalescence and disappearance of most probable 
paths in analogy to the formation of a focal or conjugate point on a caustic surface 
(Schulman 1975, 198 1 ). The stability characteristics of the critical paths are determined 
by the lowest-order non-vanishing Frechet differential of the OM functional in an 
analogous way that the lowest-order term in the Taylor series expansion of a thermody- 
namic potential determines the stability properties of new thermodynamic states that 
emerge beyond the critical point. Depending on this order, we obtain polynomial 
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expressions, in the unstable mode about the critical path, which give rise to cuspoid 
catastrophies (see, for example, Poston and Stewart 1978). However, unlike equilibrium 
second-order phase transitions, we cannot invoke symmetry arguments for why odd 
powers in an extended form of a Taylor series expansion of the OM functional should 
vanish. For example, if there is a non-vanishing third-order Frechet differential of the 
OM functional then a so-called fold results. Therefore, there will be a certain polynomial 
which appears in an integral with a small parameter, which we identify with Boltzmann’s 
constant (Lavenda and Santamato 1982), that will govern the form of the critical 
phenomenon. 

2. Transformation of functional integrals 

Integrals over the Wiener measure can be transformed into integrals over new probabil- 
ity measures which are absolutely continuous with respect to the Wiener measure 
(Girsanov 1960). Although this property enables us to derive an expression for the 
probability distribution of paths of non-equilibrium statistical thermodynamic 
processes (Lavenda and Santamato 1981), we prefer to use the standard transformation 
formulae of Gel’fand and Yaglom (1960) since they provide for a continuity in approach 
and connect a Jacobian of a generally nonlinear transformation with the correction 
term in Itb’s stochastic calculus. 

A particle moving under the influence of Brownian motion in R‘ is described by 
the stochastic differential equation: 

dcp( t )  = (2k)”’ d W (  t ) ,  QO(0) =o, (1 )  

where W (  t )  is a standard Brownian motion whose intensity parameter, k, is identified 
as Boltzmann’s constant (Lavenda and Santamato 1982). Denote by 

the integral of a functional Ficp) belonging to the class of all bounded and continuous 
functionals over a function space C[O, T ]  of continuous functions in the interval [0, TI 
such that cp(0) = 0. This initial condition is no restriction and is used for simplicity: 
any other initial condition will simply cause a shift in the arguments in expression (3) 
(Gel’fand and Yaglom 1960). P(cp) denotes the Wiener measure, namely, 

d P (  cp) = (4rkT)-”’ exp( -cp2/4kT) dcp. (3) 

The scaling in (2) has been introduced to suggest an analogy between the asymptotic 
6behaviour of {pk} and the law of large numbers (cf (32)). 

We are interested in how this measure transforms under the general nonlinear 
transformation: 

where the drift, b, is assumed to be bounded and continuous. By the well known 
transformation properties of Wiener integrals (Schilder 1966), we get 

( 5 )  E r {  F ( J k @ ) )  = E r {  F(Jkcp)J(Jkcp) exp[A(Jkcp)/2k]}, 
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where 

and V(cp) is the so-called generating function (Landau and Lifshitz 1969): 

V( cp) := f b 2 (  cp). (7) 

The role of the Jacobian is taken by the linear part of transformation (4). Observing 
that one half of Volterra’s kernel on the diagonal (Gel’fand and Yaglom 1960) is 
-fb’(cp), Fredholm’s determinant is equal to: 

J(cp)=exp -+  b’(cp)dt . ( loT ) 
Since the transformation is nonlinear, the Jacobian is clearly a functional of the path 
cp = cp( t ) ,  and consequently it cannot be brought out from under the expectation sign 
in ( 5 ) .  On the contrary, if we had employed Girsanov’s theorem (Girsanov 1960, 
Lavenda and Santamato 1981), the first integral in (6) would have turned out to be 
an It6 (I)-stochastic integral and its conversion to the symmetric Fisk-Stratonovich 
( S )  -stochastic integral (Stratonovich 1968): 

= ( S ) - J  b(cp)dcp-k J b’(cp)dt 
0 0 

(9) 

would have generated automatically the Jacobian of the transformation. Note that 
(dcp)* has been replaced by its Brownian motion expectation value, 2k dr. Since the 
Fisk-Stratonovich integral enjoys all the properties of an ordinary integral 
(Stratonovich 1968), the first integral on the right-hand side of*(9) is identified with 
the first integral on the right-hand side of (6). The second integral in (9) is the 
uncertainty in the specification of a Brownian path (Lavenda and Santamato 1979); 
alternatively J 2  can be interpreted as the density of paths satisfying the continuity 
equation (Gel’fand and Yaglom 1960): 

a , P  + av ( bJ2) = 0. (10) 

The asymptotic behaviour of the functional average, in the ‘thermodynamic’ limit 
as k & O  (Lavenda and Santamato 1982), can be obtained by Laplace’s method (Schilder 
1966, Ellis and Rosen 1982a). Suppose that the OM functional 

r 7  

O(cp)=+ J +2dt-A(cp) 
0 

has a proper minimum on C[O, TI. Call this minimising function c p * ( t ) .  Let the 
functional average ( 5 )  undergo a parallel translation, 

d t ) +  W)=cp(t)-cp*(t)lJk, (12) 

in the functional space C[O, TI with endpoints 

h(O) = h( T )  = 0. (13) 
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Denoting the functional average (5) by I ( k )  we have: 

If the functional A( cp) possesses at least two Frechet differentials in the neighbourhood 
of the minimising function then by an extended form of Taylor's theorem we have 

A(Jkcp)=A(cp*)+JkdA(cp*)h + ( k / 2 ! )  d2A(cp*)h2+. . . . (15) 

Upon introducing (15) into expression (14) we obtain: 

I( k )  = exp[-(+k)O( p * ) ] E  hw{ F (  cp * + >'kh)J(  cp * + Jkh ) exp[a d2A( CO*) h2]}, (16) 

where E r {  e }  denotes integration with respect to the 'excess' Wiener measure: 
T 

dP(h )  = (47rrT)-'I2 exp( - a  [ h ( t ) I 2  dt) dh. (17) 
0 

Because 

O(cp*) = 4 IoT +*2 dt  - A(cp*) 

is the proper minimum implying that the first Frechet differential of the OM functional 
vanishes along cp* (  t ) ,  namely 

loT h+* c i f  +dA(cp*)h = 0 

which is equivalent to the Euler-Lagrange equation: 

+*-  V'(cp*)=0, (19) 

In order to obtain (19), we have performed an integration by parts and used the 
homogeneous boundary conditions (13). Finally, taking the thermodynamic limit, (16) 
becomes 

lim kCO Z ( k )  = F(cp*)J(cp*) exp[ -( k)~cp*)] d * A ( c p * ) ~ } .  (20) 

This expression can also be written in the form: 

limZ(k)=F(cp*)J(cp*)exp 
k10 

reminiscent of a Feynman-Kac formula. 
What we have accomplished is to transform the original measure for cp into a new 

measure for h such that the most probable path of cp with respect to the new meas_ure 
is cp* for small k. And with respect to the new probability measure, h = cp - cp*/Jk is 
Gaussian provided the OM functional has a proper minimum at cp*. This can be thought 
of as a law of large numbers or a central limit theorem for { q k }  (Ellis and Rosen 
1982b) in the asymptotic limit as kJO. The statistical independence of { q k }  will be 
related to a stability criterion in the next section. 
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3. Stability of fluctuating paths in the small k limit 

If the OM functional is to have a proper minimum at p* then 

d20(  p*) h2 > 0. 

Now the expectation in expression (20) can be written as IC exp[a d2A(p*)h2] d P ( h )  = exp[-$ d20(p*)h2]  d h l ( 4 ~ T ) " ~  (23) 

where P ( h )  is the excess Wiener measure defined in (17). Expression (23) clearly 
shows that the minimum property (22) is a stability criterion for the most probable 
path of a fluctuation in the thermodynamic limit as kiO. In this section, we analyse 
this criterion in greater detail. 

The question of the positive definiteness of the second Frechet differential of the 
OM functional can be answered in terms of a variational problem (Schulman 1981). 
What we want to determine is whether there is any function $ for which d20(p*)h2 
vanishes. The function IL( t )  must satisfy the same homogeneous boundary conditions 
as h ( t )  (cf (13)). In addition, it must be normalised on the interval EO, TI, namely, 

I, 

Io' ( IL ( t ) ) *  dt  = 1, (24) 

since the homogeneous boundary conditions set no scale for the variational problem. 
The normalisation condition acts as a constraint on the variational problem 

d20(p*)$'= ($2(f)+ V(p*)$'(t)) d t=min .  ( 2 5 )  I,' 
The second Frechet differential of the OM functional (25) resembles an action whose 
corresponding Lagrangian is 

L ( $ ) : =  $ 2 +  V"(Cp*)$2. (26) 

Handling the normalisation constraint by the method of Lagrange multipliers, the 
unconstrained variational principle corresponding to (25) yields the extremum con- 
dition 

4- V"(p*)$+AJ/=O, (27) 

where A is the Lagrange multiplier. Equation (27) is the well known Jacobi equation. 
Multiplying the Jacobi equation by $ ( t ) ,  integrating over the interval [0, TI, and 
performing an integration by parts show that the Lagrange multiplier is the minimum 
value of the OM functional 

d20((p*)$2 = A. (28) 

The Jacobi equation (27) together with the homogeneous boundary conditions 
constitute a Sturm-Liouville problem. We therefore know that the eigenfunctions of 
(27) constitute an infinitely denumerable sequence whose corresponding eigenvalues 
are ordered such that A ,  < A z  < h3 < . . . . Although only the eigenfunction correspond- 
ing to the smallest eigenvalue minimises d20(p*)h2,  the other eigenfunctions do make 
it stationary (Schulman 1981). Since we are working in function space, where each 
eigenfunction or mode represents a 'direction', we will want to keep the space finite. 
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infinite series at some finite value N and set 

(29) 

where the aj are expansion coefficients. In the unscaled case, the error for each 
aj, j = 1, . . . , N will go to.zero with ,k (Schulman 1981). Hence, the second Frechet 
differential of the OM functional can be written in the canonical form 

The stability question can thus be answered by showing that the smallest eigenvalue 
is positive. Introducing (30) into (23) and with the change of variables to integration 
over the modes we obtain: 

E r  {exp[t d2A(cp*)h2j} =constant x n daj exp - $  hja:) .I j y l  ( ] = I  

=constant ( j : ,  n hj )-”* . 

where the constant contains the Jacobian of the transformation from coordinates to 
modes. From the Sturm-Liouville theory, we know that (31) will turn out to be finite 
only when A I  > 0. 

Formula (31) will break down in the region near and at focal or conjugate points 
where at least one eigenvalue of the second Frechet differential of the OM functional 
goes to zero. We will assume, in the next section, that cp*(t) is simply degenerate. 
The path cp*(  t )  will be referred to as a critical path whose stability properties will now 
be analysed. 

4. Critical paths and temporal bifurcations 

Suppose that the critical point is a simple focal point with a single eigenvalue vanishing 
at that point. In the critical region, the functional average (20) is most singular and 
we restrict our attention to this domain. 

In the non-critical case, the stability criterion (22) holds and asymptotically 

(cp - cp*/Jk) : P (  h )  (32) 

53 
where + denotes convergence in distribution. It is apparent that (32) suggests an 
analogy with the central limit theorem for a large number of independent events. Now 
in the critical region, the path stability criterion (22) is violated and we can no longer 
expect (32) to hold. This implies the presence of extremely large statistical correlations 
in the critical region. In the critical region (32) must be replaced by: 

(cp-cp*/Jk)+Q,(h) (33) k( I / z -  I /  U )  

where Q Y ( h )  is a non-Gaussian probability measure on RI which is determined by the 
critical exponent (1/  U )  (Ellis and Rosen 1982b). The integer v is determined by the 
lowest non-vanishing Frechet derivative of the functional A, i.e., (1/  v) E (0,;). 
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In the absence of scaling the a ,  mode is of O( k 1 I 2 )  for normal fluctuations. However, 
in the critical region it is of O ( k l ’ ” )  which can be seen from the following simple 
example. Suppose that there is a finite third-order Frechet derivative of A. We would 
then be led to consider integrals of the type 

Y m ( k )  = y m  exp[-( 1 - k ) y 3 ]  dy. 5 (34) 

Assuming that the limits of integration are unimportant, we would obtain a scaling of 
the form 

(35) m / 3  113 Y m ( k ) = k  k Y m ( l ) >  

showing that each power of y gives a contribution of O( k 1 ’ 3 ) .  In this case the critical 
exponent, ( I / v ) = f  and we must rescale accordingly in order to obtain a correct 
weighting of the terms entering into the extended Taylor series expansion of the OM 

functional. Let us consider this case in greater detail. 
One of the eigenvalues of d20h2  vanishes along the most probable path. The 

eigenvalue is a function of the endpoints as well as the time interval T, Thus the 
endpoint cp*( T )  is a conjugate point for the trajectory leaving cp*(O). The conjugate 
point lies, in the more general case of Rd where d > 1, on a caustic surface and the 
disappearance of a classical path is a characteristic feature at a caustic (Schulman 
1975). Hence, we will consider an expansion about the most probable path in which 
there is a small shift A from cp* and fix it so that the parameter A determines the size 
of the critical region. In order to rescale in the critical region, we extract the fundamental 
from (29), which we denote by h , ,  and weight it by a factor k 1 / 3 .  The remaining modes 
will be denoted by h’ and are weighted by the usual k1I2 .  Hence the ‘Taylor series’ 
expansion for the OM functional in the critical region is: 

~ ( c p *  + A  +3Jkhl  
N 

= A  lo’ V(cp*) ( ’Jkh ,  + h h ’ )  d t  + ( k / 2 )  A,a; 
1 = 2  

+ ( k / 3 ! )  JOT V”’(cp*)h:dt 

to leading order in k. In the derivation of (36), we have used the fact that cp* is the 
solution of the functional equation (Schilder 1966) 

O(  cp*) = 0 (37) 

and consequently, 

-d@(cp*)A=dA(cp*)A=A b’(cp*)(d*- b(cp*)) d t = @ .  I,’ 
The dominant contribution to the integral over the a,-mode will come from the cubic 
and linear terms. In order that they be of the same order of magnitude, the parameter 
is chosen to be of O ( k 2 ’ 3 )  and this fixes the size of the critical region (Schulman 1981). 
The remaining term in A is smaller by k1I6 than the other terms and hence can be 
discarded. The expansion of the O M  functional in the critical region, to leading order 
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in k, can be written in the canonical form: 

where 

and S denotes the scaled critical region A/ k2/ ’ .  

takes the form (cf expression (20)) 

lim I(k)=constantxJ(cp*)F(cp*) 5 fi dajexp(-; f Aja~-(fc3a:+c,a,  1) . (41) 

The integrals over modes a2 to aN give a factor proportional to [n: A,]-’/2 where the 
prime denotes that the a ,  mode has been excluded. We are therefore left with the task 
of evaluating the integral over the cubic polynomial 

Consequently, the functional integral ( 5 )  in the small k limit in the critical region 

k10 ] = I  j = 2  

in 

lim I ( k )  =constantxJ(cp*)F(cp*) 
kSO 

where q := (c l /c3) .  Observe that (42) is closely related to the Airy integral 

Ai( q )  = db, exp{i[qb, -fb:]}. 5 

(43) 

(44) 

The nature of the solution depends on the sign of q. Now since q S  k-*” , the 
thermodynamic limit kJO sends 141 to infinity. The asymptotic forms of the Airy integral 
for large 141 can be found by the saddle-point method. For q - * q  the saddle points 
occur on the real axis and we must go over them. The asymptotic form of the Airy 
integral is 

Ai( q )  - q-’14  COS(^^^'^ + ~ / 4 )  as q + m .  (45) 

In regard to our original integral, this would correspond to a pure imaginary a ,  mode 
which gives the dominant contribution: 

Q ( q )  - [cIc,]-”4 cos(+c,q”* + T/4) as q + m .  (46) 

For q -* -00, the saddle points of (44) occur on the imaginary axis and we pass through 
that saddle point that has a zero inclination of the path at the saddle point. The Airy 
integral is approximately given by 

Ai(q)- ( - - q ) - ’ 1 4  exp[-f(-q)’/*] as q + -W. (47) 
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This gives a real a,  mode and the functional integral decays exponentially as e~p{-161~/~} 
since 

Q ( q )  - ( -C ,CJ ’ ’~  exp(-fIc,IJ/qO as q +  -a. (48) 

The sign of q is determined by whether we are prior to or beyond the focal point, 
corresponding to a negative or positive 6, respectively. The exponential decay region 
corresponds to the ‘shadow’ and there, the functional average (41) has a small value. 
Alternatively, the region beyond the conjugate point is ‘brightly illuminated’ and there 
will be a far greater probability of finding the system since the value of (41) is much 
larger. The brightest region is found in the immediate vicinity of the conjugate point; 
there, the probability is greatest for finding the system and the functional integral is 
most singular, i.e. Q(0)  is of O(k’/‘). It is in this region that we can expect highly 
anomalous effects to occur. As the width of the critical region diminishes the individual 
saddle points coalesce at the origin into a monkey saddle. 

In contrast to deterministic stability criteria which determine whether states are 
stable or unstable, the stochastic analysis presented here determines zones in which 
the system is likely or unlikely to be found in. From this we conclude that an effect 
of random thermal fluctuations is to undermine the deterministic stability criteria. 
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